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This article deals with the same type of problems of the theory of linear 

differential equations in two independent variables as the earlier work 

[ 1 I : the boundary value problem for the elliptic equation, Cauchy’s 

problem for the equation of the hyperbolic type, and the problem on the 

construction of a particular integral of an equation of arbitrary type. 

As in [l I. we assume that the boundary values of the solution function 

and its derivative (or the free term of the equation) depend on a large 

parameter k, and represent rapidly oscillating functions. In contrast with 

I1 I, we here assume that a small parameter h appears in the coefficient 

of the derivatives of highest order. We investigate the nature of the 

solutions of the problems mentioned, and give various methods for con- 

structing approximations to these solutions. These methods vary according 

to the relationships existing between parameters k and h. We assume the 

reader to be famif iar with the content of the earlier work f 1 1 . 

The method on which the present work is based was used in the author’s 

monograph f z I on the theory of elastic she1 Is. Certain of the results 

presented here have already been formulated in the said monograph, but 

were there stated as preliminary announcements. Here, relegating the 

question of the efficiency of the method to second place, the author 
attempts as far as possible to define the conditions in which the method 

is valid. 

1. 1. Let us consider the equation 

where h is a small constant parameter, while L and N are differential 
operators of order 1 and n respectively (it will always be assumed that 

44 
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For the time being we assume only that the coefficients of both oper- 

ators are sufficiently smooth. Additional hypotheses will be imposed on 

L and N later. 

The equation (1.1) will be solved under boundary 

on a large parameter k. We establish the connection 

the formula 

k = I+ 

where t is a positive member. 

conditions clepending 

between k an? h Ly 

(1.2) 

2. We will seek integrals of the equation (1.1) of the form 

Here x and [ are positive numbers such that x < 6; the symbol C* (here 

and subsequently designates summation over all values of the appropriate 

index having the form o + r /[ (0, T are nonnegative integers), 

fCh fx, /x+b . * . , h-d, (h, ‘h,,, . * * , @R--1/!: (1.4) 

are functions of a and p which are independent of k, f. is not constant, 

a0 is not identically zero, and QR is a function of (a, p, k). 

Subsequently, the function f,, will be called the principal part of the 

change function, the functions f x+h will be referred to as the coeffi- 

cients of the expansion of the change function, Qu(U < RI will be known 

as the coefficients of the expansion of the intensity function, and QR 

will be called the remainder term. 

The number k in the formula (1.3) is related to h by the formula (1.2). 

For a fixed h, the rate of change of the function CD increases with an in- 

crease in t. We will therefore call t the change index of the considered 

integral. Our first problem consists in the investigation of the pro- 

perties of the integrals of the form (1.3) in so far as they may depend 

on the change index t. 

3. The operators L and N have the same structure as had the operator 

L in article [ 1 1 . Formula (1.9) of that paper is valid for L and N, and 
we may write: 
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v=l u-R 

kz 2 k-U 2’ k-u L, (O,,) 
U=O U=O 

(I-6) 

q=?l p=R 
iV (CD’) = ekf kn 2 k-q x’k-p N, (Qp) 

(1.5) 

q=o p=o 

In these formulas Lv and Nq are differential operators of orders u and 

q respectively. ‘Iheir coefficients are polynomials in the derivatives of 

f of degree 1 - u, and n - q, respectively. Taking into consideration the 

expression (1.3) for f, we may write 

h=h’ x+A -- 
L v = Lv, o + 2 k F Lo,(x+w 

h=O 
&=&I x+!J -- 

N, = N,, 0 + 2 k r N,, (xfw)lC 
Ir=o 

where L and N with two subscripts no longer depend on k, 

h’ = (I - v) (C - x - I), I*’ = (n - q) (C - x - 1) 

Substituting (1.6) into (l.S), after some transformations we obtain 

I 

r=l+R u=r 

L (Q) = ekf k’ ‘jJ* x’k-’ Lpu] (@J (r - u < I, u s R) 
;r=_o u=o 1 

(1.7) 

1 

e=n+R p=s 

LV (Q) = ekf kn I]’ Z’k-S~V~~-~~(@~) @-pPn, P<W 

s =r, p-0 I 

In these, and in all subsequent formulas, we should retain in the suns 
only those terms in which the sumnation indices satisfy the inequalities 

indicated in parentheses. The expressions qW1 and yWl are given by 

LW = z L, Y/C> ~V,lDl = 2 -%Ylc 

r+ulF-w r +YlC=w 

(the swmation being carried out over all nonnegative integers r and y, 

for which r + y/c = w). 

We can show that L[J has the following properties (assuming that w’ 
stands for the integer part of w ). 

(a) L[d is a differential operator of order w’ whose coefficients are 
polynomials in terms of the functions fo, fx, fx+ 1, . .., fc_ 1 and their 
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derivatives, and linear functions of the a. 
Ik 

(VI. 

the principal part 

ante with formulas 

(b) When I is an integer, the principal part of J!+[J coincides with 

of the operator ~5.1 f= f. and, in particular, in accord- 
(1.7) and (1.8) of the earlier work [ 1 I , we have 

Cl*91 

where foa, fo P 
are the derivatives of f. with respect to a and /3; the 

succession o dots indicates terms which do not contain symbols of 

differentiation. 

(cl ‘lhe following formula holds good: 

L,UJ, = 0, o<w<p 

(1.10) 

Here and subsequently, the symbol F(f < x + A) stands for a function 

of fo, fx, fx+ 1, . . . , fx+x _ I and of their derivatives. 

The function N[J has completely analogous properties. 

4. Let us substitute (1.7) into the original equation, replacing h by 

k with the aid of (1.2), and let us drop the exponential factor. We then 
obtain 

f2 n-111 
r=ntR p=: 

2 2 ~C-sN[8-~](Qp) + AZ’ 2 2’ k-‘L[r-u](Q)u) 

a=0 p=o I { 

r=l+p u=r 

r=O u=O 

(r-u<l, u<R, s--pQn, p<R) 

Next, following the same procedure as that used in the earlier work 

111, we equate to zero the coefficients of the different powers of k 

beginning with the highest power. Three different cases can arise in this 
connection. 

Case 1. 

I>n--1 /t or t< 
1 -=t 

s--l 0 
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Now, assuming that I = n - l/t + p, and equating to zero the coeffi- 

cients of all powers of k from 1 to 1 - R - 1 + l/c, we obtain 
u--l 

2 *~[,,I(@,) = 0 (T --US&Z; u<R; r---O, I/<, . . .,p-1/C) (1.12.1) 

u=o 
U=r 

-jJ * Lrr-u] (@u) + 
P=r,P 

2 &r--5-*] (@p) = 0 (1.12.2) 
u=o p=o 

-u<iI;u<R;r- P--P<& P<R r=~, ~tfit, ~+215,...,R+1--f/i) 

r=l+R u=R s=n”+$+p p=sp 
2' 2' k-rLLl,_,,(io,)+ ;rll 2 k-SNCs--p-pl(~p)=O (1.12.3) 

r=Rfl u=o 

Case 2. 

Now, assuming 

equations 

P=f 

S==Rfl p=o 
(r--u<I, s--p--p<?&, p<R) 

l<n-lft or t>n+=tO 

that n - l/t = 1 t p, we similarly obtain the following 

z- ~p-._p] (Q’p) = 0 (s - p<n; p<R; s=O, i/t, 2/e ,.,., p--l/c) (1.13.1) 
p=o 

TJ=z V‘=5--p 

2 iT[s-PI (Qp) + 2’ &s--p--u] (@¶L> = 0 (1.13.2) 

p=0 u=o 

(s-p<nn; p<R; S-Q--u<l, u<R; S=p, p+l/c, p+Z/(,...,R+l-l/c) 

s=nfR p=fi 

2 2 k-+ %*-PI (@P) -t- 

P=z+R*+p ll=t-+p 

,Js-J 2 /c-r &-P_u] (@,,) = 0 (1.13.3) 
S= R+I p=o r=R+i u-o 

(s-p<nn; F--p--u<t; us&R) 

Case 3. 

l=n---l/i! or tGn-&=tO 

In this case we obtain 

u2 L[F--u] (aA) + ps A$,_,, (CD,) = 0 
U==O p=o 

(1.14.1) 

r-R+1 u=o s-R+1 p-o 

(r-u<ZE; S-p<n) 
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5. Let us rewrite the lead-off equations of the systems (1.12), (1.13) 
and ( 1.14). After dropping the nonzero factors QOpo, we may write these 
equations as follows: 

(1.16) 

Since Lcoj and Ntol are characteristic polynomials of the operators L 
and N respectively, it follows from (1.15) to (1.17) that if integrals of 
type (1.3) exist, then the level lines of the principal part of the change 
function fO* will behave as follows: 

(a) when t < to they coincide with one of the family of characteristics 
of the operator I;; 

(b) when t > tO, they coincide with one of the families of character- 
istics of the operator N; 

(c) when t = to, they pass along lines which either are not character- 
istics of L or of N, or else are characteristics of both. 

Remzrk: The trivial solution f. = const of the equations (1.15) to 

(1.17) is not considered. 

Integrals of type (1.3), for which the level lines of the principal 
part of the change function coincide with some family of the real or 
imaginary curves, will be called integrals corresponding to this family. 
Thus we can assert that when t < to we obtain integrals corresponding to 
families of characteristics of the operator L, but when t > to, then the 
integrals correspond to families of characteristics of the operator N, 
Integrals of one or other of these types will be called fund~ntal inte- 
grals (or solutions) of equation (1.1). 

2. 1. Let us take t > to, i. e, we consider Case 2, and examine system 
(1.13) more closely. 

This system has a meaning only then when 

* Just as in the work [ 1 1 , the integral ft. 3) is constructed in general 

within a complex region, and, hence, the level lines can be imaginary. 



50 A.L. Go1 ‘denveizer 

n=l+l/t+p (2.1) 
and p is a number of the form (I + r/4' (u, r are positive integers). In 

the opposite case, the expression L[s - p - pl has no meaning. Hence- 

forward we will always assume that p = T + r/c; this means, on the basis 

of (2.1), that we take a rational number for the change index t. (In mono- 

graph E2 1 l/t was assuned to be an integer). 

2. let p < 1. We will show that in that case a recurrence process for 

the determination of the function (1.4) can be constructed if one sets 

xR=P* 

When p = x/c in equations (1.13.11, the subscripts of N will be less 

than x/c, and owing to property (c) of operators L[ip~, NrWl, all equa- 

tions (1.13.1) will be satisfied if we setNLOl = 0; i.e. system (1.13.1) 

is equivalent to equation (1.161. 

From system (1.13.21 we pick the equations corresponding to (s < 1). 

These equations constitute a system of algebraic equations because they 

contain L and N with only such subscripts as are less than one, which 
according to property (a) d o not involve symbols of differentiation (they 

are operators of zero order). 

After some obvious transformations, this system can be reduced to the 

form 

N r(x+WCl = - hl (A=O. 1,2,. . . ,t;-x-l) (24 & 

We can now determine the coefficients of the expansion of the change 

function by successive solutions of equations 

(2.3) 

(see property (cl and expressions L[(p~, N[,J 1. 

Equations (1.13.21, corresponding to (s > 11, can now be rewritten as 

Nr11 Po) + h--P] Do = 0 

NI,I (@s-d + LII--PI P-L-i) = 
p=s-lsll~ 

2 

u=a;l-ilT 

=- NW-_pl PP) - CI 4*-P-u] WI) = 0 
P==O u=o 

(s-ppnn; s-p--u<l; s=l+l/~,...,R+l-l/tJ 

(2.4.1) 
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or, expanding the left-hand sides by 

of (1.9): 

using formulas analogous to those 

W[Ol) $ + l ’ .] ((DE.+) = 

pr-1-IIT U-S-l--i/l;: 

=- 
z* %6-?‘1 (@PI - 2’ L[6--P--u] (%> 

p-0 u-o 

(On the left-hand side only the principal parts are written out explicit- 

ly. ‘lhe subscripts are subjected to the relations given earlier). 

On this basis the coefficients of the expansion of the intensity 

function can be determined by the ‘method of successive integration of 
first-order linear equations, For the determination of the remainder 

term there remains equation (1.13.31, which may be rewritten in the form 

r=ntR r--l+F+~ 

2 h-"&(I-R](@R)+ r, k-"&-p-R](@R)= F (2.5) 
s=R+l r=R+el 

where F is some definite expression in terms of the function (1.41, while 

8 is the larger one of the nunbers 1 and p. 

3. Next, suppose p > 1. We can then assuae that the change function 

is independent of k, that is f = f(a, p) = f,<a, p), and that the coeffi- 

cients @,, of the expansion of the change function with integer subscripts 

are identically zero for u < p. We thus obtain a recurrence process for 

determining the functions 

(p' is the largest integer less than p ). ‘lhe recurrence process mentioned 

is described below. 

‘Ihe change function fO is determined by means of equation (1.16). 

Functions @o, 9, . . . . 
9, 

are determined with the aid of equations 

p-=6--2 

N, (@E-l) = - 2 N6--p(cRp) @-~Pnn; 6=1,...,~) (2.4.2) 
p-0 

where 8 is the smaller of numbers R and p’* Functions BP, Qb + I/c, . . . . 

‘R-i/( (when p’ < R) are determined by the use of equations 

P-s-1pc 
u-67 

Nl (@6-l) = - c N6-, (CD,) - 2 L6-,-u VW 

P==O 

(s-ppnn; s=p, P +lK,...,&L,T) 

(2.44 
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‘lhe remainder term is determined from equation (2.51, just as when 

p < 1. 

Remarks. 

(a) If p > 1, and all the functions f +A 

ally zero, LI~I and NL~I do not differ rom r 

(b) If p is an integer, it may be assumed 

subscripts are zero, i.e. an integral of the 

work 111 is sought. 

are assumed to be identic- 

Lw and NW respectively. 

that all @a with fractional 

same type as in the earlier 

(cl If p < 1, the recurrence process for the determination of the 

functions (1.4) can be obtained by setting x/c = p/m (m is an integer); 

just as when p > 1, we may set x /< = l/m. ‘lhe processes described for 

the construction of functions (1.4) are not unique. ‘Ihey are only the 

simplest, and lead to integrals sufficiently general for finding the 

solutions of problems of special interest. 

4. lhe coefficients of the original equation are assumed to be 

sufficiently smooth. It is for this reason that the only singular points 

of the equation (1.161, (2.31, (2.4) and (2.5) will be those where the 

coefficients of the highest-order derivatives vanish simultaneously. 

For the equations (1.16) and (2.51, these will be the points at which 

all the bNiin) vanish simultaneously, i.e. the singular points of 

operator . 

For the equations (2.3) and (2.41, these can be only those points at 

which the following equation holds 

(2.6) 

i.e. (a) singular points of operator N; (b) stationary points of function 

fOo; (c) points at which the characteristics of N are repeated, or points 
of comnon tangency between N characteristics belonging to different 

families. 

‘Ihe trivial solutions fO = const are disregarded. ‘Ihe case when all 

the b. .tn) are identically zero in the region in question is also excluded 

from %isideration without loss of generality. We may therefore conclude 
that all the points of a region G cannot be singular points of the equa- 

tions (1.16) and (2.5). For the equations (2.31 and (2.4) this can happen 
only then when the operator N has multiple families of characteristics 

in the region G. 

5. In the equations that determine fx (when p < 1) or (I$. _ l(when 

p > 11, the ten which depends on the operator L has a coefficient LL~I 
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which can vanish identically only when the regions of L and N being con- 
sidered have coinciding families of characteristics. If this case is 
excluded, we may assert that the terms in (2.4). depending on operator L 
will enter into the computations from a certain stage, when we begin to 
determine QP _ 1. ‘lhus, we say that if t > to, then the integral of type 
(1.3) can be determined (when p >/ I) from the approximating equation 

Jm; ((I,) = 0 (2.i) 

to within the asymptotic error of the order k-f’* I. This means that for 
every problem for which R = p - 1, the remainder ten aR = cb ’ 
bounded, that the replacement of equation (1.1) by equation Bzc.+)wz:lbe 

not affect the change function, and that the error caused by this re- 
placement will be of the order O(k-P+ I) in the determination of the 
intensity function. If p < 1, the equation (2.7) is not applicable to the 
determination of the intensity function, and it will also give an error 
in the determination of the change function. 

‘Ihe principal part of the change function can however, be constructed 
precisely for an arbitrary p, 

If L[,,J = 0, then the asymptotic error of the equation (2.7) decreases, 
but we cannot go into greater detail on this question here. 

3. Let t < tu, i.e. we have case 1. We must then use system (1.12) to 
determine the coefficients of the expansion of the change function and 
of the intensity function. Ibis system (1.12) differs from system (1.13) 
only in that L is replaced by N, and N by L. Iherefore, by analogy with 
Section 2, we can formulate the final results at once without having to 
make any explanations. 

2. let the following relation be given 

(as before, p is a number of the form u + r /<). 

If p < 1, we set x/4 = p, and obtain: 

(a) to determine the principal part of the change function, equation 
(1.15); 

(b) to determine the coefficients of the expansion of the change func- 
tions, equations 

(3.J) 
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P-2) 

(cl to determine the coefficients of the expansion of the intensity 

function, equations 

u=r-l-l~c p=t-1-N 

=- 2. -b-UIPU) - 2. %r-_p--PIP%) (3.3.1) 
u=o p=o 

P - u < 1; r-p - p <n; r = I,1 + l/C, , . . , R + 1 - l/c) 

(d) to determine the remainder term, equation 

r=Z+*R s=n+R+p 

2 k-‘-&-R] (Q)R) + 2’ k-’ +--p-R] (@R)=P (3.4) 
r=R+l s=R+e 

where F is some definite expression involving functions (1.41, and 8 is 

the larger of the two nmbers 1 and p. 

3. If p > 1, then we may assume that f = f. and @,, is different from 

zero only for integer values of u < p; in that case we have the following 

results: 

(a) f. is again determined by means of equation (1.15); 

(b) functions @u(u < p) are determined by equation 

?.b=r--2 

L(%-1) = - c L-U (QL) 
ll=o 

(r--<Z; r=l,...,fJ) (3.3.2) 

(0 is the smaller of the nmbers R and p'., while p_#. is the largest integer 

less than p); 

(c) the functions eU(u > p) are determined, when p'.< R, by equations 

u=r-i,lJ C p=r-_p 

L (@r-l) = - 2 L-u(@u) - 2’ Nr-p-p (@p) 
u=o 

(r -u < 72; r-p-_P<n: r=p+1, p+r& 9 . * * I R + I - l/t) 

(d) the remainder term (BR is determined by means of equation (3.4). 

4. The only singular points the equations determining functions (1.4) 

aud the remainder term QR can have are the singular points of operator 
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L, the stationary points of fo, the multiple points of the characteristics 

of L and the comnon tangency points of characteristics of L belonging to 
different families. 

5. If, as before, we assume L and N to have no overlapping families of 
characteristics in the region being considered, then N[,] & 0, and the 

quantities connected with operator N will enter into our derivations only 

when we come to determining function @ _1. Hence for t < to, an integral 
of type (1.3) can be determined from t e approximate equation YA 

L(@)=O (3.5) 

with an asymptotic error of order k -P+I. 'Ihis statement must be under- 

stood in the same sense as in Section 2. 

4. 1. Let us assume that t = to, i.e. we have case 3 and consider 
system (1.14). In this case the recurrence process to determine functions 

(1.4) can be obtained for an arbitrary rational value x/l < 1. (In 

particular, we may set x/L: = 0, i.e. take f = fo; but this will not yield 

integrals general enough for solving the problems we are to consider.) 

We will describe the process corresponding to the case when x/5 f 0. In 

doing so, we will not dwell on the consideration of case p < 1, for such 

considerations would be identical with those in Section 2. 

(a) To determine f. we have equation (1.17). 

(b) 'Ihe coefficients of the expansion of the change function are de- 

termined by means of equations 

(A= 1,2,..., I-%---1) 

(c) ‘Ihe coefficients of the expansion of the intensity function can be 

determined successively with equations 

I ‘$-& {L[O] + %I]) & + & &,I + &d $- + - * .] (@o> = 0 

$-&l, -t hd & + g-$ G[Ol + NlOl) $- + * * .]PT-1) = 
00 

u=r-l;llC P=J-l-l/c 

+ 
3- 

2 Ltr-Ul (@‘u) -- 2’ &J-PI (@P> (4.2) 

(r- u & I; s LT& n; r, s = 1 + 1/C, 1$3/t, . . . , R + 1 - f/C.) 

The remainder term is determined by the use of equations 
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r=Z+R s=n+R 

2’ k-rLIr-R] (@R) + 2’ k-“N&R, (@‘R) = 
r=R+l s=R+l 

r=R+l ?A=0 

(r -24 sg I; 
s=R+l p=o 

2. We will seek such solutions of 
values on a given real contour y not 

or N. 

equation (1.7) as take on zero 

touching the characteristics of 

Iet contour y be made to coincide (if necessary by means'of a pre- 

L 

liminary real transformation of the independent variables) with the line 

Q = aO. ‘Ihen f,, = 0 on y, and (1.7) yields 

(4.4) 

'The functions a, ,,(*I and b, O(n) are distinct from zero at all points 

of y, for otherwise‘the charactkistics of L or N would touch the contour 
y. Therefore, the equation (4.4) yields n - 1 non-zero values for foa on 

Y: n-1 

where v is a root of the equation 

(4.5) 

Differentiating (1.7) with respect to a, and setting a = a0 in the 

result, equations can be constructed for the successive determination of 

the contour values of any order derivative of f,-, with respect to a. These 

equations have the form 

A- [%oi’) foaZ + bLo(n)loanl 
afo, 

where F is a known function of the arguments enumerated. 

The coefficient of the r-th order derivative in the left hand side is 

obviously different from zero, for foa stands for a nonzero root of 

equation (4.4), and the latter, being a root of the binomial, cannot be 

a multiple root. Hence, to every solution of (4.5) there corresponds 

some integral of equation (1.17), which on some obvious hypotheses can be 

determined in the neighborhood of y by means of Taylor's series. 
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3. If f0 is known, then the remaining functions (1.4) and the re- 
mainder term are obtained by integrating the equations (4.11, (4.2) and 
(4.3). Thus, to each of the solutions of (4.5) there corresponds a certain 
class of integrals of type (1.3). As in the earlier work [ 2 1 , we call 
these “integrals with the support contour ya. From this it follows that 
these are the solutions of equation (1.1) for which the principal part of 
the change function vanishes on y. 

We will show that equations (4.1), (4.2) and (4.3) have no singular 
points on y. b hypothesis, b, O (n) f 0 on y. Therefore, there are no 
singular points of operator N 6n y, and hence equation (4.3) has no 
singular points. Singular points of equations (4.1) and (4.2) can occur 
only where the following equation holds good: 

+ {L,o, + NI"l) = #g {hOI + N,Ol) = 0 
a0 

and since the contour value of foa is zero, we must have the relation 

-& I-%0, + fV,Ol> = $- 1~2 o(‘)/oal + hO(n)jo = 0 on 7 
oa v 

but this contradicts a result established above . 

The contour value fO, in the integrals with support contour y is pro- 
portional to the corresponding root of binomial equation (4.6). 

Generally speaking, these roots can be separated into tHlo sets: 
(n - Z)/2 of them have positive real parts, (n - Z)/2 of them have negative 
real parts. The exception represents cases when n - 1 is an odd integer 
or when equation (4.6) has two pure imaginary roots. 

5. 1. lzt us consider a problem analogous to problem A in the earlier 
article [ 1 1 . In the finite simply-connected region F = r + y, bounded 
by contour y, parameters (a, /3> correspond to a system of coordinates 
similar to a polar system, i.e. contour y is given by equation a = a0 > 0, 
and the region is determined by the inequalities 

‘Ihe correspondence between the points of the region and the rnnnber pair 
(a, /3) is one-to-one everywhere except at points a = 0 and lines /? = 0, 
/3= 2l7. 

Problem A consists in constructing the solution of equation (1.1) in 
the region r under the boundary condition 
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( p=o,1,2 )...) +-I 
.> W- even) 

where g(p) and 4 are given functions of p independent of k, while C# is 

assumed to be a real function. Just as in the earlier work [ 1 1, the 

parameters of the problem are assuned to be sufficiently smooth, i.e. y 

is a sufficiently smooth contour, while g(p) and e’@ are sufficiently 
smooth functions of points on contour y. Moreover, it is assumed that +’ 

does not vanish at any point of y. Our aim will be to show that the 

approximate solution of problem A under known conditions will consist 

either of fundamental integrals only or of fundamental integrals and inte- 

grals with support contours y (where y is the boundary of the region). 

2. As will be shown later, the solution of problem A can be sought by 

assuming the parameters t in boundary conditions (5.1) and in formula 

(1.3) to have the same meaning. Therefore, in the concretely formulated 
problem A, parameter k is determined by the character of the boundary 

functions, and it is natural to call it the index of changeability [or 

variability I of problem A. 

3. Let us first consider the case when t > to, and assume N to be an 

elliptic operator without singular points of y, all whose families of 

characteristics are simple near y. Moreover, we will assume that on y 

there are no points of comnon tangency of characteristics of N belonging 

to different families. 

In this case we seek a solution of problem A in the form 

q) = r, (D*W@l(q) (5.21 

where f( Q) and O,(Q) stand f or the change function and intensity function 

of the fundamental integral corresponding to the q-th family of the 
characteristics of N. ‘Ihe sumnation is carried out over a certain number 

of families of characteristics of N, to be specified later. 

4. Functions fo( Q) and f x+ h’(I) will be subjected to the following 

conditions 

f,(Q) = icp (/ii) on y (5.3.1) 

Re {fan) > 0 on 7 (5.3.2) 

f x+A(q) =I 0 on 7 (5.4) 

Condition (5.3.2) is called the “damping condition” in the earlier 
work [ 1 I . It was there shown that only those integrals can be subjected 
to this condition which correspond to oertain definite families of 

characteristics, in which there will be n/2 in an elliptic operator of 
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order n. In sum (5.2) we will therefore retain only the n/2 terms corres- 
ponding to these n/2 families of characteristics. 

The principal part of the change function f. has no stationary points 

on y, for by hypothesis +‘(/3> is never equal to zero; the singular points 

of N, and the points of comaon tangency of the characteristics of N be- 

longing to different families, are absent from y. This means that the 

equation which determines fo, f x+ x and au has no singular points on y, 

and we assume that in the neig~rh~d of y, the functions fOtq! and 
(q) &+A satisfying the contour conditions (5.3) and (5.4) will be uni- 

f&mly bounded in a, /?. 'Jhen, for sufficiently large k, the function 

will satisfy the following condition 

f(n) L= irp (5.51) 

Re {faf’J)j > 0 on r (5.5.2) 

as in the earlier work [ 1 1. 

5. Having replaced L by D(pp9) and@andfby@‘J andfq in formula 0 0 

(1.51, we obtain 

v-w u=R 

lW.0) (a>@‘> = $f(q) {&A r] k-v 2 *k_uD,,,Cu~o~ (Q,(q))> 

v=o u=o 

Let us sum the expression obtained over n/2 values of q, substitute 
conditions (5.1) and divide out the exponential factor. We thus obtain 
the contour relation 

q=qm v=u U=R 

-j$ ku 2 k-v 2 * k-uL)v,q(w) (@u(q)) = kr*gW 
On 7 (5.6) 

q=1 v=o u-0 

which is entirely analogous to contour relation (2.3) obtained in the 
earlier work [l] in solving problem A for an equation which did not con- 
tain a small parameter. 

6. JJenceforward the solution of problem A is constructed exactly as 

in the earlier work [ 1 1, 

In (5.6) we equate the coefficients of corresponding powers of k from 
/l to /I - R + J/C on both sides of the equation. As was shown in [l 1, this 
makes it possible to attach to each differential equation (2.4) the con- 
tour condition wJrich consists in specifying the values of function Qu (9) 
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on y. We assume proposition (a) that there exists a small enough neighbor- 
hood of y in which all the functions @,,(u < R) so determined are unifomn- 
ly bounded in a, $3. 

For the remaining terms, from (5.6) we obtain n/2 contour conditions 
similar to conditions (2.6) in article El 1. ‘l&e problem on the construct- 

in the nei 
~~~~fe~~~t~so~~~~tions ,I,? 

borhood of y thus remains indeterminate, 
satisfies an equation of order n. We 

next assume proposition (b), that this problem can be made determinate by 
specifying additional contour conditions so that functions (BR('7) may be 
uniformly bounded in a, /3, and k in some neighborhood of y. 

Let us consider the expression 

q-n@ U-R 

(jy = II) 2 qp) + (D(o) (q)(q) = /p(q) 2. jy-“qQ 

q-1 u=o 

Here q% is a smoothing function which has the same meaning as in the 
earlier work [l 1. ,It is equal to one in region l? , i.e. when a 2; a > 

aO - 9, equal to zero in region r--16_, i.e. when’aO - t>a>8(O<q< 
t: < a,), and is ~~~dedly differentiable in region r6 - $, i.e. when 

a0 - 'I >a >‘a0 - f. 

Let us require (IJo) to satisfy equation (1.1). We then obtain the 
following equation to determine a: 

We select CF so small that propositions (a) and (b) hold good in I", 
and that the damping condition (5.5) is also satisfied. The absolute 
value P will then be of type O(k- “1, where u is arbitrary. In region rq, 
contained in I',, all Q, q) satisfy equation (l.l), while $= 1, and hence ( 

P = 0. In region r-.I',, P is also zero since x = 0. In I', - IT,.,, the 
absolute values of #(qT are of type Q(k- “1 bedause of equation 

and owing to propositions (a) and (b), while \'J and its derivatives are 
bounded. lherefore, the absolute value of P is of type Otk- u). 

Introducing proposition (c) that the nonhomogeneous form of equation 

(1.1) has a bounded solution for an arbitrary bounded right hand-side and 
for homogeneous condition (S.l), we may assert that the approximate solu- 
tion of problem A, without @ and the remainder terms, can be found in 
the form 
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q-1 

with an error of the order O(kBR). 

u-o 

7. Propositions (a) and (cl pertain to classical problems of the theory 
of differential equations, and we will not dwell upon then. Proposition 
(b) was considered in the earlier article [l I, but certain errors were 
made in the discussion there.* 

l'he question of making the problem on the OR determinate is more 
difficult to settle than had been expected. A complete statement of the 
difficulties is not appropriate here. We will restrict ourselves to the 
consideration of an example illustrating the matter. 

Let the following equation be given in polar coordinates (r, 0): 

[k-l(~+f~+~~+a)+~(~+.~~)]a)R=g (5.7) 

(a, g are given functions, k is a large constant 1. The following contour 
condition is also given 

@R/r-i = 0 (5.8) 

It is required to specify the contour values of the derivative of OR, 
with respect to T, in such a way that the corresponding Cauchy problem 
may have a bounded solution (as k + DO 1 in the neighborhood of r = 1 (for 
r < 1). 'lhe question of making the problem on the remainder term deter- 
minate in the example considered in [l ] (Section 61, is equivalent to 
the problem just stated. 

We introduce the notation 

POR 
= m, CD 0 

arm r=1 F r=l 
= l?(m) 

and construct the system of equations obtained when (5.7) is different- 
iated successively with respect to F, and r =- 1 is set in all but the 
original one of.these equations. Making use of (5.81, we then obtain 

l In particular, in the so-called auxiliary characteristic equation one 
term was omitted, and the equation actually has the form 

{w(‘) rva + @_A)’ - f’,]}_, = 0 
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k-l Pw + %,) +2%, = g(o) (5.9) 
k-l (%) + Q)(z) - Q)(l) + 3 + ~cI+,)) - 2% - 2@(,) + 2i “$l= l?(l) 

. . . . ..(I.......................... 

Letting 

% = 2 k-v, ((pp- are functions of 0 
p=o 

and applying a familiar procedure, by means of (5.9) we can successively 

determine the contour values of all the derivatives of QR with respect 

to r and construct the solution of Cauchy's problem in the form of a Taylor 

series in F. In doing this, @tPcl will in general be represented in terms 

of infinite series containing positive powers of k, and the boundedness 

of the solution as k -, - will thus not be guaranteed. Therefore, we re- 

quire that all the Q "1 be represented in the form of a Maclaurin series 

in powers of k -l. II! is leads us to the equations 

Go = go, -22rgo- 4r+r + 2i ‘!$f = gl. . . 

from which we can successively determine functions Cp , $, . . . . and the 
problem has thus been made determinate. 

The method presented of determining the problem on th QR can be carried 

over to the general case of interest to us (when the coefficients of the 

equation and the given data of problem A are analytic functions). A de- 

tailed discussion of this matter is, however, quite cumbersome and would 

be out of place here.* 

8. Thus, when t > to, problem A for an equation with a small parameter 

has the smne properties as when the equation does not contain a small 

parameter. 

For large enough k, problem A has a rapidly damped solution, which can 

be constructed with arbitrary accuracy by the superposition of fundamental 

integrals with indices of change equal to the change index of the problem. 

Ohis assertion is of a conditional nature in the sense that the original 

equation has to satisfy certain conditions which will ensure the valid- 

ity of certain propositions assumed in this paper.) 

l This type of method was actually used in the earlier work [I I. but 

there a mistake was made in the auxiliary contour conditions by shor- 

ing only the principal terms. 
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'lhe actual construction of the approximate solution of the problem 

(without the remainder term) reduces to the integration of equations 
(1.16) with contour conditions (5.3.11, equations (2.31 with contour con- 
ditions (5.41 and equations (2.4) for given contour values of function 
@a. Since the resulting solution is conposed of integrals corresponding 
to n/2 families of characteristics of N, equation (1.161 can be replaced 
by n/2 linear first-order differential equations (see [ 11 1. Finally, the 
approximate solution of problem A is reduced to successively solving 
Cauchy's problem for first-order linear equations in the neighborhood of y. 

9; If an asymptotic error of order k'P+l is allowed, then the solu- 
tion of problem A can be constructed by means of approximated equation 
(2.71. Greater accuracy requires the consideration of L, but the quanti- 
ties connected with this operator can introduce corrections only into the 
free term of the equation and into the boundary conditions determining 
the coefficients of expansion of the change and intensity functions. 

6. 1. Let t < to, while L is an elliptic operator with simple (non- 
multiple) families of characteristics having no singular points in r, and 
possessing no points of comnon tangency of characteristics belonging to 
distinct families. In this case a solution of problem A cannot be con- 
structed by the superposition of fundamental integrals only, for when 
t < to the number (I1 of different families of fundamental integrals is 
less than the required nunber (nl. It becomes necessary to take integrals 
with support contours into consideration. 

2. Let us consider the integral whose supporting contour coincides with 
region boundary y. We change the notation used in Section 4 and express 
the integral in the form: 

CD= Y,eeg (6.1) 

where g and fi stand for the change function and intensity function, 
respectively, and 8 has the same meaning as k in Section 4, so that 

h=S-q-1 S+i u=R -- 

g-go+ c 0 4 g7l+it Y* = 2 *o-CR,, (6.2) 
A=0 U==O 

We will take into consideration only the cases when equation (4.6) has 
exactly (n-- Z1/2 roots with positive real parts, and we take the solu- 
tion of-problem A in the form 

9=w r=='/*(n--t) 
0 = 2 @Jq)ckt(q) + 2 y* (+@k?(') (6.31 

9=1 ?=I 

Here, there are Z/2 fundamental integrals in the first sum, which 
correspond to the l/2 families of characteristics of L which can be 
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subjected to damping condition (5.3.2), the second sum contains (n - 2)/2 
integrals with the supporting contour y, which correspond to the roots of 
equation (4.6) whose real parts are positive. 

3. In sum (6.3) and in the integrals with the given supporting contour, 
the symbols [ and n are integers, n/t is a proper, positive, rational 
fraction, and 0 is determined by the formula 

1 -- 

fj = 11 ?I-' (6.4) 

The proper, positive, rational fraction x/r, which appears in the 
fundamental integrals of the right-hand side of (6.31, is chosen in 
accordance with the specification given in Section 3, whereby x and < may 
proportionally change (while still remaining integers). Parameter k of 
the fundamental integrals is determined by means of formula (1.2). 

4. We will express t and 9 in the following forms: 

i= t g II - t (n - l)] 

t (n - 1) ’ 
7/= 

l(?z--l) -- 

The requirement that q/t shall be a proper fraction 
because of the inequality 0 < t(n - 1) < 1. 

(6.5) 

is always fulfilled 

Without changing the value of fraction x/c, the integer < can be 
selected in such a way that [ and r) are integers, for t is a rational 
number, Subsequently 5 will be assumed to be the smallest integer satis- 
fying this requirement. ‘lhe formulas given above for 6 and r) are thus 
valid. From them, by means of (6.4) and (1.2), we can derive the follow- 
ing equations 

fp-',fF.=k fj1ie = Al: : 

5. ‘lhe term g, is zero on y in the integrals with given support 
tour. Making use of the last-displayed formulas, we thus obtain 

i,,~-+l_l k--a-1 
(‘g”’ = (Jl--711 5. 

2 
0-x 1 'gn&k 2 ,+I:&, on Y 

A=0 LO 

We require the following conditions to be satisfied: 

gn(‘) = iy, gq+i(r) = 0 (A =z 1,2,..., 5 - iy - 1) On 7 

‘Ihen the next relations hold good 

ogw r~ iky on T 

(64 

(6.7) 

(In the three last displayed equations r takes on the values 1, . . . , 
(n - 1)/2). 



Asymptotic integration of linear partial differential equations 65 

We require that the principal parts of the change function of the 

fundamental integrals and the coefficients of expansion of these functions 
satisfy contour conditions analogous to those given in Section 5: 

j,(q) = ip, Re {joa( > 0 on 7 (6.8) 

(q = I,... ;I, 

f x+)ikJ) = 0 (X=0,1,..., t-x-1) dn 7 (6.9) 

‘lhe following contour relations will hold good: 

kj(Q) = ikv ,pn 7 
( 
q=l,..., fl 

> 
(6.10) 

6. ‘Ihe functions g’l +A are determined by equations of fon (4.1) which 

have no singular points on y (see Section 4). Functions fx+X 

can be obtained from equations (3. l), which also have no singular points 

on y, for f0 can have no stationary points on y owing to the boundary 

conditions. By hypothesis there are no singular points of L on y, nor any 

points of convnon tangency of characteristics of the operator L belonging 

to distinct families. From this it follows that if the coefficients of 

(1.1) are sufficiently smooth, then the functions g 

be sufficiently smooth in the neighborhood of y, 

+ h and f x+x will 
an B hence the following 

conditions will hold good: 

Re {gJr9 > 0, Re {ja(Q)} _> 0 on y 

which guarantee the damping of all terms of the right-hand side (6.3) in 

the neighborhood of y. 

7. Substituting expression (6.3) into contour condition (5.11, and 
taking into account (6.7) and (6.10) by means of relation (1.7), we obtain 

the following equation 

q=112 0=lL u=R 

2 kb 2 k-o 2 l k-“&,@a (c&(q)) + 
Q==l u=o u=o 

r=lldn-f) v=u u=R .~. 
+ z ku 2 k-0 2 ’ k-u&;,(uIO) (Y,,(r)) = kpg(d on 7 

r=l u=o u=o 

Q1 this basis contour conditions can be obtained for Qu(u~< R) and aR 
by the process briefly described in Section 5. 

8. Thus, when t < t 0, problem A for equation (1.1) has solutions which 
decrease as we pass from y into the interior of r. lhe rate of this de- 
crease increases with an increase in k, i.e. with an increase in the 

speed of oscillation of the functions contained in the contour conditions. 
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When certain hypotheses analogous to propositions (a), (b) and (c), 

Section 5, are satisfied, then the boundedness of the remainder term* is 

guaranteed, and the solution of problem A can be constructed with an 

arbitrary degree of accuracy for large enough k. This construction can 

be carried out by the superposition of fundamental integrals and of 

integrals with supporting contours passing along boundary y. 

The approximate construction of fundamental integrals entering into 

the solution of problem A is reduced to the integration of equation (1.15) 
with contour conditions (6.81, equations (3.1) and (3.2) with contour 

conditions (6.91, and equation (3.3) for given contour values au. As in 

section 5, all these operations can be reduced to the successive solutions 

of a certain nunber of Cauchy problems for first-order linear equations 
in the neighborhood of y. 

l’he approximate construction of the integrals with support contours, 

which enter into the solution of problem A, can be reduced to the inte- 

gration of equations (1.17) with contour condition f0 = 0, equations of 
type (4.1) with contour conditions (6.6), and equations (4.2) with given 

contour values QU(u < R). The reduction of nonlinear equation (1.17) to 

a certain number of linear equations cannot be accomplished. However, since 

the integrals with the support contour y, as well as the fundamental 

integrals, need only be constructed in a neighborhood of y, and since for 

all practical purposes this neighborhood is quite narrow (see below), it 
follows that the method described in Section 4 for the solution of equa- 

tion (1.17) is quite applicable. 

9. lhe fundamental integrals which occur in the solution of problem A, 

when t = l/(n - I + p) < tO, can be constructed with asymptotic error of 

order k-f’ +‘bymeanso f approximating equation (3.4). The corrections 

which can be realized by the use of operator N will affect only the free 

terms of the equations and the boundary conditions determining the coeffi- 

cients of the expansion of the change and intensity functions. 

10. lhe damping of the fundamental integrals and of the integrals with 

support contour y is of a nonuniform nature. The rate of damping of the 

fundamental integrals for t < to is always less than the rate of damping 

of the integrals with the said support contour**, and moreover, the rate 

.+ 

We note that hitherto it has not been necessary to require the oper- 

ator N to be elliptic when t < tO, but this will become necessary for 

proposition (c) to hold good. 

This fact served as the basis for introducing the term “fundamental 

integral* (an integral which penetrates deeper in the region). 
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of danping of the fundamental integral depends on the change index, while 

the rate of danping of the integrals with the said support contour re- 

mains stable. 

When t = 0, the fundamental integrals lose the danping property. At 

the some time, the proposed method becomes inapplicable for constructing 

the fundamental integrals (since the parameter k ceases to be large), but 

the method is still valid for constructing the integrals with the said 

support contour (for 8 still remains large). 

when t = 0, the ordinary method of a small paraneter can be used for 

constructing the fundmnental integral. Problem A, for the case t = 0, was 

considered in great detail by Vishik and Liusternik in paper [ 3 1 (where 

it was assuned that the small parameter did not appear in the boundary 

conditions). For constructing the fundamental integrals, the method of 

successive approximations was used in paper [ 3 1 , while for constructing 

the integrals with support contour y (the boundary layer, in the tennino- 

logy of 13 1 1 a method was used similar to that explained here and 

applied earlier in monograph [ 2 I . 

‘Ibe Vishik and Liusternik results can, of course, be used in the case 

t > 0, but it should be realized that they become less effective with an 

increase of t. when t > to, the procedure used in [3 1 becomes entirely 

useless. 

Remark: Vishik and Liusternik introduced the term “boundary layer” 
1 pogransloi I , interpreting it to mean any integral having the property 
of exponential damping. This property is possessed by integrals with a 
supporting contour. These two concepts are not identical, however. 
According to Vishik and Liusternik, all integrals forming the solution 
of problem A when t < tu must be attributed to the “boundary layer’ 
[ pogransloi I, while according to the terminology adopted here, the solu- 
tion of problem A consists of fundamental integrals and of integrals with 
a support contour y. (The difference between these integrals is described 
above). 

If t < to, the solution of problem A contains those integrals with the 

support contour y which can be constructed only when the boundary of the 

region in question does not touch a characteristic of operator L: If y 

does pass along the characteristics of L or even touch them, the pro- 

perties of the solution of problem A will change radically. For exmnple, 
this phenomenon explains the fact that in the theory of thin elastic 

shells the state of stress of an open cylindrical shell or of a shell 
with a hole is quite different from the state of stress of a closed 
cylindrical shell without a hole (the characteristics of operator L in 
this case coincide with the generators of the cylinder). 
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For a study of the problem in which the boundary of the region passes 
along the characteristics of operator L, a concept of the integral with 
a characteristic support contour was introduced in [2 ] (in 13 ] an 
analogous concept was called a parabolic limiting layer). 

7. 1. Let us consider problem B for equation (1.1). By this we mean 
the integration of equation (1.1) with boundary conditions 

@O)(@) =_gWe*b on 7 @=O, 1, 2,. . . , n-l) 

Here y is a curve which does not touch the characteristics of operator 
N and which coincides with the line a = ap (if necessary, by the use of 
a preliminary real transformation of the Independent variables); +(/3) 
is a real function, 4'46) is never zero. The parameters of the problem 
are assumed to be sufficiently smooth in the sane sense as that given in 
Section 6. Problem B is solved in general by the same process as problem 
A. tvkeover, the solution of problem B with a parameter has much in 
cornnon with the solution of this problem without a parameter. We will 
shorten the explanations by taking the opportunity to make appropriate 
references to the relevant Sections of this paper and of the earlier 

mrklll. 

2. If the change index t of problem B is greater than tO, then the 
solution of this problem can be constructed approximately by the super- 
position of fundamental integrals with the sane change index, i.e. by 
means of the integrals corresponding to the families of characteristics 
of operator N. 'lhat is, we may set 

(7.1) 
q=1 

where the summation is carried out over all n families of the character- 
istics of N (N is assumed not to have multiple f&lies of character- 
istics). 

The following contour conditions have to be imposed on the change 
function and on the coefficients of the expansion of these functions: 

f,“l) = iyJ@), fx+i = 0 on 7 (h=0,1,2,...,r-x-1) (7.2) 

'lbe contour conditions for the coefficients of expansion of the in- 
tensity function and for the remaining terms can then be derived in the 
same way as in the solution of problem B in the earlier article [ll. 

Determining the principal part of the change function and the coeffi- 
cients of expansion of the change and intensity functions is reduced in 
the final step to the successive solution of Cauchy problems for first- 
order linear equations, just as in Section 5. These equations will have 
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no singular points in the neighborhood of y if we assme that there are 
no points of comon tangency between the characteristics of N belonging 
to distinct families. 'lhe solution of problem B can be constructed to 
within au error of order k-P+l by means of the approximate equation 
(7.2). 

If operator N is completely hyperbolic, then all the functions fO(q) 
will be pure imaginary in consequence of (7.2). If, in addition, 
t > l/(n - 2 - 11, i.e. p > 1, then the functions fX+~ will be identic- 
ally zero (see Section 2) and the solution of problem B will have the 
oscillating nature typical of such problems. However, if t is restricted 
to the interval 

1 -=to<Kn__:_- n--l 

then the functions fX+h cannot be assumed to be zero in a neighborhood 
of y lying in I', and the sun (7.1) will in general contain terms which 
will increase rapidly 8s k + by. 

3. If the change index of problem B is less thsn to, and ify does not 
touch any characteristics of L or of N, then the approximate solution is 
composed of the srnn of fundamental integrals corresponding to all the 1 
families of characteristics of L, and of the sum of integrals with support 
contour y corresponding to all the n - 1 roots of equation (4.6). 

'Ihe integral with support contour y must be taken in the form (6.11, 
(6.21, while 5 and q are subjected to the relation f6.51. 'Ihe coefficients 
of expansion of the change function of the integrals with support contour 
y must be subjected to the conditions 

gn”) I= irp, g O=Y a+k = (X=1,... ., 4-q-l r = ~,..*,‘/&2-4)) 

while the principal part of the change function of the fundamental inte- 
grals, and the coefficients of expansion of these functions, must be made 
to satisfy the following requirezmnt: 

fiQ)_+, j&=0 Ha r(X=O,1,...,C--X--1, q=l,.**,‘/zQ) 

In this case, the contour conditions which are put on the coefficients 
of expansion of the intensity function and on the remainder terms, as 
well as those on the fundamental integrals and on the integrals with 
support contour y, are determined as in the case t > to. In the case in 
question, the construction of function (1.4) for the fundamantal integrals 
reduces to the successive solution of a Cauchy problem for first-order 
equations, one of which (the one determining the principal part of the 
change function1 is nonlinear. All these equations will have no singular 
points in the neighborhood of y if the coefficients of equation (1.1) are 
sufficiently smooth, if this equation does not possess singular points 
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on y, and if on y there are no points of coaxnon tangency of character- 
istics of L belonging to distinct families. 

4. If t< to, then the solution of problem B will contain all integrals 

with support contour y including those which in the neighborhood of y in- 

crease rapidly as they are moved away from I’. ‘lherefore, for snail t, the 

solution of problemB will have a purely oscillatory character only in 

exceptional cases, even when L and N are completely hyperbolic operators. 

8. 1. Let us consider the problem of the construction of a particular 

integral of the equation 

hN (D) + L (Q) = C/J (a, p) ekf @’ ‘) (8-l) 

where (as in the earlier article [ 1 I 1 f is a pure imaginary sufficiently 

smooth function which has no stationary points in the region in question, 
\I, is a sufficiently smooth function (in general complex), while k is a 

sufficiently large constant. 

Assuning that k and h are connected by the relation (1.21, we call t 
the change index of the free term. 

2. Let us suppose that the change index of the free term is a rational 

number and satisfies one of the following three conditions: 

t< 
1 

n-Z+1 t>/ 
1 

n-l-l’ 
t=1=t, 

n-l 

lhen a particular integral of (8.1) can be sought in the form 

u=R 

(8.3) 

where 5 is chosen so that l/t will be a number of the form o + r/c . Sub- 
stituting (8.3) into (8.1) we obtain a relation similar to (1.11): 

e=n+R p=s r=l+R u=r 

Ic~+“-~ ’ ’ { 2’ r; k-‘N,_, (CD,)} + km+’ { 2’ 2’ k-‘L, (Q,)} = + 
1 s-0 p=o 

(r-u<l; u&Ii; 1 r=o u==o I 

s7p<n; PSR) - 

Following the earlier procedure, we equate the coefficients of equal 

powers of k on both sides of this equation. Three cases can then arise. 

(a) If 

1=n-1Ijt+p (P>1) 

we set m = - 1, and obtain 
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L,cl), = + 

u=r-1 I < 

Lo@>, = -.- z’ L,_. 2( (a?,) 
u-0 

tr - u < 1; r = 0, l/i, z/c, .*(I t 8 - l/4; 8 is the smaller of the numbers 
p and RI 

(b) If z = rz - l/t - p(p > l), we set m= l/t - n = - (Z+ p), and 
obtain the system 

p=s-1 I c 

N&h = - 2’ N8_p(@p) 
p=o 

ts - p 4 n, s = 0. l/Z1 2/l. . . . , 8 - l/c; 8 is the smaller of the numbers 

p and RI 

t*--pcnn; s-u--p<l; S=IP, ~-i-1/5, Q+'2jc,...,H--l/t) 

s=n+R p=R 

2’ 2’ k-*Ki-,(~p) + 
r=t+R*+p u=r--p 

2 2 k-fL,_,_,(~u) = 0 
r-R P---O r=R+l u=o 

(s-ppnn; ‘-Q--u<l) 

* These relations are valid only if R > p. 
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fc) If 1 = n - l/t, then, setting I = - I = l/t - n and [ = 1, we 
obtain the system 

r=r-1 I t: p=e--l / 5: 

(L, + IV*) @r = - 2’ L-u(cDu) - 2’ N.-p (@p) G-3.6) 
u-0 p=o 

(‘--u<li; s--p<n; t,s=l,l+i/~,..., R--I/<) 

r=Z+R u=R s=n+R p=R 

z)’ 2’ k+L_, (ala>,) $ 2’ 2’ k-6N,_p((Dp) = 0 
r=R u=o s=R p-0 

(r-uG&l s-p<n) 

3; Systems f8.41, (8.5) and (8.6) generally make it possible to de- 
termine successively all expansion coefficients of the intensity function 

by means of algebraic operations. But to be able to do this it must be 
required that the following conditions hold good at all points of the 

region in question: 

(a) If t < l/h - 1 + 11, the expression L, has to be different from 

zero, m.e. the level lines of the change function of the free term must 

not touch the characteristics of operator L; 

fb) if t > l/(n - 2 - 11, the expression N, has to be different from 

zero, i.e. the level lines of the change function of the free term must 

not touch the characteristics of operator N; 

(cl if t= l/(n - 11, the expression L, + No must not be zero (this re- 

quirement does not have a sinple geosmtrical interpretation). 

4. If the expressions Lo, No, and Lo+ N, are identically zero for the 

corresponding values of t and in the region in question, then we have a 
case analogous to the resonance case, i.e. the value of index nr must be 

increased by unity (if the characteristics of the corresponding operator 

are sinple, not multiple). 

‘Ihe expansion coefficients of the intensity function are then deter- 
mined by linear first-order differential equations. We will not dwell 

upon the details here. lhey are to be found in the earlier article I1 1 . 

9. The results presented admit of various generalizations. 

1. The generalization to the case of more than two independent vari- 

ables is trivial. The few assertions which require any examination are 

those based on the expansions of the left-hand sides of equations (1.15) 
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and (1.16) into factors which are linear with respect to fo, and fop 

2. The generalization to the case when operators L (for t < to) and 

N(for t > to) have multiple families of characteristics can be obtained 

without changing the form (1.3) of the final integral. Here, however, the 

selection of fraction x/c requires careful analysis involving the con- 

sideration of a large number of various possibilities. 

3. The generalization to the case when in place of equation (1.1) we 

have a system of linear differential equations presents no fundamental 

difficulties. Here the method of the selection of noncontradictory values 

of the index of intensity described in monograph [ 2 I can be used. 

Remark. An example. constructed by Hadamard, on the instability of the 

solution of Cauchy’s problem for an elliptic equation is widely known 

(for example, see [ 4 ] ). It can obviously be obtained as a particular 

case of the solution considered in paper [l 1 of problem B for the elliptic 

equation without a parameter, when the initial conditions contain a 

rapidly oscillating function. Lax [5 I has pointed out that this pheno- 

menon reveals itself quite naturally in the application of asymptotic 

integration: it merely relates to the fact that the change function 

proves pure imaginary only for an entirely hyperbolic equation. The re- 

sults obtained here in Section 7, subsections 2, 4. show that in solving 

Cauchy’s problem for an equation of the hyperbolic type with a small 

principal part, phenomena can also occur, which approach the phenomenon 

revealed in Hadamard’ s example. This means that if the contour condition 

formulated for problem B in Section 7, is fixed. a value of h can be 

selected in equation (1.1) so small that @ becomes larger than any pre- 

assigned number at points near y and inside r 
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